

AVR32101: Configuring the AVR32
Interrupt Controller

Features
• Flexible interrupt handling
• Multiple levels, groups and priorities

- User configurable
• Low latency
• Nested interrupts

1 Introduction
The AVR®32 has highly flexible interrupt controller, which can be configured to suit
a broad variety of implementation needs. Interrupts are grouped, and each group is
given an interrupt level. As this is controllable by software, prioritization of different
interrupts can be customized to suit system requirements. The interrupt controller
manages interrupt prioritization in hardware, while the setup of these features is
done in software and is covered in this appnote.

Figure 1: Interrupt controller overview

Interrupt lines

M
A

S
K

IN
G

Interrupt lines

Interrupt lines

Interrupt levels
and offset

PR
IO

R
IT

IZ
E

R

Interrupt level
and autovector

Valid requests

CPU

32-bit
Microcontrollers

Application Note

Rev. 32010A-AVR-04/06

2 AVR32101
32010A-AVR-04/06

2 Interrupt organization

2.1 Overview
The interrupt controller featured on the AVR32 series is highly flexible. One or more
interrupt lines are grouped together. These groups of interrupts are given an interrupt
level, and therefore the interrupt itself has the same interrupt level as the group. A
non-maskable interrupt (NMI) is also available. This level is reserved for highly critical
interrupts that may occur in a system.

2.2 Interrupt levels
There are distinctive interrupt levels, namely level 0 through 3. The highest priority
level is level 3. Higher prioritized interrupts have a larger number of shadowed
registers than interrupts with lower priority. This ensures low latency interrupt
handling. NMI interrupts are handled as a separate group and has its own interrupt
level. This level has a higher priority than the other levels.

Each interrupt level has its own associated mode. The AVR32 changes the mode of
operation according to the level of the interrupt that is currently active and thus giving
each interrupt level it's own context.

2.2.1 Shadow registers

If a register is labeled as shadowed, the value of the registered is stored whenever a
mode change occurs. When the actual mode is reentered, the previous values are
restored through the use these shadow registers. The context switch due to a change
in the running mode can thus be kept to a minimum. The number of shadowed
registers is different from mode to mode and from part to part. Consult the datasheet
for your specific device to the get the number of shadowed registers available for
distinctive modes.

2.2.2 Masking

Global interrupt masking is available. In addition all interrupt levels can be individually
masked. A non-maskable interrupt cannot be masked, as the name indicates.

Whenever an interrupt occur, hardware automatically sets the mask bits
corresponding to all sources with equal or lower priority.

Masking an interrupt level is by all practical means the same as disabling it.

2.3 Grouping
Each interrupt is member of a group and that group is then associated with an
interrupt level. That gives the specific interrupt an interrupt level.

 AVR32101

 3

32010A-AVR-04/06

Figure 2. Interrupt level priority

NMI

Level 3

Level 2

Level 1

Level 0

In
cr

ea
si

ng
 p

rio
rit

y

The number of groups and members per group is specific to each individual part.

Figure 3. Interrupt grouping

member #0
member #1
member #2

.

.

.
member #m

group
#0

. . . .
interrupt level

group
#1

interrupt level

member #0
member #1
member #2

.

.

.
member #m

group
#1

interrupt level

member #0
member #1
member #2

.

.

.
member #m

group
#n

interrupt level

member #0
member #1
member #2

.

.

.
member #m1 20 n

In Figure 3 the number of groups is labeled as n, while the number of members per
group is referred to as m. To find the number of groups and members per group,
consult the datasheet for your specific device.

The maximum number of different groups available is 64 and the number of interrupts
in a group is 32 or lower. These are maximum numbers, and very often there are
groups that have few members. Typically interrupt lines from modules are ordered
into different groups, though not all groups may be available in your selected device.
Consult the datasheet for your specific part for more information.

2.4 Priority
If several interrupts occur at the same time, selecting the highest prioritized interrupt
is done in hardware. The following rules apply:

• If only one interrupt group request is issued, the pending interrupt will be handled
• If two or more groups have pending interrupts, the group with the highest interrupt

level will be handled first

4 AVR32101
32010A-AVR-04/06

• If two or more groups have pending interrupts, and they all have the same priority,
the lowest numbered group will be handled first

The last rule also applies in the case that two or more members of a single group
issue an interrupt. The lowest numbered irq-line has the highest priority and therefore
handled first.

3 Interrupt controller
In order to utilize the interrupt-handling scheme available in the AVR32, the interrupt
controller must first be initialized. Every interrupt that can occur must be registered
before normal execution starts to ensure a well-behaved system.

3.1 Registers
The AVR32 interrupt controller uses set of different registers, which is unique for each
group. This chapter has a brief description of the register operation associated with
the interrupt controller. The user interface is covered in depth in your datasheet.

3.1.1 Interrupt Request Register

There is one Interrupt Request Registers (IRR) for every group. Each IRR has 32 bits,
one for each possible interrupt request for that group. When an interrupt is pending,
the bitfield for the corresponding interrupt is asserted. These registers are read-only.
These registers are labeled INTC_IRRm, where m is the actual group.

3.1.2 Interrupt Priority Registers

There is a number Interrupt Priority Registers (IPR) that reflects the number of
groups. These registers have a reset value of zero. In these registries there are two
bitfields, one named INTLEVEL and one named AUTOVECTOR. The INTLEVEL field
gives the level of the group while the AUTOVECTOR field gives an offset. This offset
is relative to EVBA (Exception Vector Base Address) and contains the interrupt
handler for the group. As there is an IPR for each group, these registers are labeled
in the same matter as INTC_IRRm; INTC_IPRm, where m is the group number.

EVBA is also used for other parts of the system (like exceptions) and defines an
offset for all relative interrupt handler addresses.

3.1.3 Interrupt Cause Registers

There are four Interrupt Cause Registers (ICR). They are all dedicated to an interrupt
label, 0 through 3, and named INTC_ICRn, where n is the interrupt level. The group
that has triggered the interrupt is stored here, whenever an interrupt occurs.

3.1.4 Interrupt masking

All masking of interrupt is done in the Status Register (SR). As described in chapter
2.2.2, there are two ways for each interrupt level to be masked; either by global
masking or by interrupt level masking. Global masking can be applied by setting the
GM bit in SR, and this is default set after a reset. To disable a specified interrupt
level, the corresponding masking bit in SR must be set for the interrupt level. These
bits are named InM, where n is the interrupt level.

An important note concerning masking is that the GM bit overrules the individual
masking of the different interrupt levels.

 AVR32101

 5

32010A-AVR-04/06

3.2 NMI
A NMI is by nature non-maskable. This is also a type of interrupt that seldom should
occur. It treated independently of the group handling which apply to other interrupt
sources.

Figure 4: The AVR32 Interrupt Controller

Interrupt controller
CPU

I[3-0]M
GM

INT_level
offset

P
rio

rit
iz

er

IREQ31

IREQ2

IREQ0

IREQ0

IREQ63

IREQ34

IREQ33

IREQ32

IRR0

IRR1

IRRm
O

R
O

R
O

R

Grp

ReqM

Grp

Req1

Grp

Req0

NMIREQ

R
eq

ue
st

 m
as

ki
n g

INT_level
offset

INT_level
offset

ValReq
M

ValReq1

ValReq0

Interrupt
level

Auto-
vector

IPR1

IPR0

IPRm

3.3 Identifying interrupts
When an interrupt is asserted, the CPU does not need to know which of the
numerous interrupt lines that have trigged. It only needs to know what level the
interrupt has and the autovector to jump to a specified memory location relative to
EVBA. If more information is needed, to handle the interrupt request, the registers
listed in chapter 3.1 can be used to identify the source.

6 AVR32101
32010A-AVR-04/06

3.4 Selecting interrupts
Whenever interrupts occur, the correct interrupt function must be run and then return
to normal execution unless no other interrupts are pending. An interrupt does not
return in the same matter as normal functions. This is due to the fact that the AVR32
changes the active operating mode whenever an interrupt occurs. To ensure correct
mode transition, all interrupts must be handled as such. To register the physical
interrupt in the interrupt controller, the address of the interrupt handler must be
provided, as well as group, line and priority.

Each module's interrupt request lines (IRQ) are numbered, which is defined in the
part specific header file. This number consists of both the group, which the interrupt
is a member of, and the line number for the member. Modulo 32 of the IRQ gives the
line number, while the positive quotient gives the group.

• IRQ % 32 = line number
• IRQ / 32 = group
This information needs to be passed to the interrupt controller to successfully register
the interrupt handler for the specific interrupt.

3.5 Enabling interrupts
When all interrupts that might occur have been successfully registered, interrupts can
be enabled. After reset, the AVR32 has by default global interrupt masking turned on.
It is essential that global interrupt masking be left on until the interrupt controller has
been correctly initialized to ensure a well-defined behavior.

4 Interface
To provide the flexible interrupt handling in the AVR32, the interrupt controller
manages these settings. This chapter describes the interface to the interrupt
controller.

4.1 Writing an interrupt handler
Whenever an interrupt occurs, the autovector and interrupt level is passed on to the
CPU and the jump and mode change is issued. I.e. on the AP7000 a NMI interrupt is
specified to present at EVBA+0x10. When an interrupt is asserted, a mode change is
made. The interrupt handler's location must be specified relative to EVBA (Exception
Vector Base Address). An interrupt handler may be regarded as a normal function
without any arguments, but with a special return instruction instead. Different
compilers use various type definitions and conventions for identifying an interrupt
handler. For examples of interrupt handlers for different compilers, consult chapter 6.

4.2 Adding an interrupt handler
When you have written different types of interrupt handlers for various interrupts that
may occur in your system, they must be added to the system. Then information as
interrupt group, interrupt line and priority must be issued alongside the interrupt
handler to register the interrupt in your system. As with writing interrupt handlers,
these functions are compiler specific. Chapter 6 includes references to example code
for adding interrupt handlers to different compilers.

When all appropriate handlers for your system is added to the interrupt controller,
clearing the GM bit in SR enable interrupts for your system.

 AVR32101

 7

32010A-AVR-04/06

5 Design considerations
Whenever designing an interrupt configuration for a specific system, care should be
taken to get the optimal performance and the best system behavior.

5.1 Nested interrupts
As all interrupts with the same and lower priority is automatically masked whenever
an interrupt is triggered, lower priority interrupts will not preempt the current running
interrupt. An interrupt with a higher priority may nevertheless preempt the current
running interrupt and thus nested interrupts is enabled by default. To disable nested
interrupts, set the global interrupt mask bit when entering an interrupt routine and in
turn clear it when the routine is completed. Then the penalty of a context switch must
be taken into account. See chapter 2.2.1 for additional information.

If an interrupt enters a critical section, all other interrupts should be masked while the
handler is currently executing in a critical section.

5.2 Interrupt routines
Interrupt routines should as a rule of thumb be kept as small as possible. Other
interrupts may have a lower priority, but that does not make them unimportant. This is
of even greater importance if nested interrupts is disabled, as a higher priority
interrupt may be blocked while an interrupt of lower priority is being executed.

6 Package information
Included with the application note is a example source code for different compilers.
The different examples are named interrupt_ex_<compiler>.c, where <compiler> is
the name of the compiler that supports the convention used.

6.1 Documentation
Function specific documentation is available in the package. Refer to readme.html.

32010A-AVR-04/06

Disclaimer
Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters
Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500

Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations
Memory

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G75 0QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive
Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom

Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

 Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© Atmel Corporation 2005. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, and AVR Studio® are
the registered trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

	1 Introduction
	2 Interrupt organization
	2.1 Overview
	2.2 Interrupt levels
	2.2.1 Shadow registers
	2.2.2 Masking

	2.3 Grouping
	2.4 Priority

	3 Interrupt controller
	3.1 Registers
	3.1.1 Interrupt Request Register
	3.1.2 Interrupt Priority Registers
	3.1.3 Interrupt Cause Registers
	3.1.4 Interrupt masking

	3.2 NMI
	3.3 Identifying interrupts
	3.4 Selecting interrupts
	3.5 Enabling interrupts

	4 Interface
	4.1 Writing an interrupt handler
	4.2 Adding an interrupt handler

	5 Design considerations
	5.1 Nested interrupts
	5.2 Interrupt routines

	6 Package information
	6.1 Documentation

